Association Between HbA1c Level and Renal Function Markers in Patients with Diabetes Mellitus
Main Article Content
Abstract
Background: Diabetes mellitus (DM) is a major contributor to kidney failure worldwide. Glycated haemoglobin (HbA1c) is widely recognised as a marker for glycemic regulation, yet its association with renal function decline is not fully clarified. Objective: This study investigates the association between HbA1c levels and renal function indicators, namely creatinine, urea, and microalbumin, in individuals with DM. Materials and Methods: A cross-sectional approach was utilised, analysing retrospective data collected from the medical records of DM patients participating in the Prolanis program in Bondowoso Regency during 2024. Correlation tests and linear regression were used to determine the relationship between HbA1c and the selected renal parameters, with a statistical significance threshold of p < 0.05. Results: Most patients exhibited HbA1c levels and renal parameters within normal limits. Nonetheless, a statistically significant positive correlation was identified between elevated HbA1c levels and increased concentrations of creatinine (p = 0.020), urea (p = 0.01), and microalbumin (p = 0.01). Conclusion: Higher HbA1c levels are associated with deteriorating kidney function among DM patients. However, HbA1c should not be solely relied upon as a standalone marker for renal impairment. Further investigations are necessary to elucidate the biological pathways involved and to evaluate the potential of HbA1c control in mitigating kidney disease progression.
Article Details

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
References
American Diabetes Association. (2025). 2. Diagnosis and Classification of Diabetes: Standards of Care in Diabetes—2024. Diabetes Care, 47(January), S20–S42. https://doi.org/10.2337/dc24-S002
Health Education and Training Agency. (2023). Indonesian Health Survey. In Ministry of Health of the Republic of Indonesia.
Cahyani, P. N., Martsiningsih, A., Setiawan, B., Kesehatan, J. A., Yogyakarta, K., Ngadinegaran, J., No, M., 55141, Y., Novakesmas, P., Tata, J., No, B., & 55293, S. (2020). The Relationship Between HbA1c Levels and Creatinine Levels in Patients with Type 2 Diabetes Mellitus. Puinovakesmas, 1(2), 84–93.https://doi.org/10.29238/puinova.v1i2.980
Choi, Y., Jacobs, D. R., Shroff, G. R., Kramer, H., Chang, A. R., & Duprez, D. A. (2022). Progression of Chronic Kidney Disease Risk Categories and Risk of Cardiovascular Disease and Total Mortality: Coronary Artery Risk Development in Young Adults Cohort. Journal of the American Heart Association, 11(21). https://doi.org/10.1161/JAHA.122.026685
Gahung, R., Pandelaki, K., & Moeis, E. S. (2016). The relationship between HbA1C levels and estimated glomerular filtration rate in patients with type 2 diabetes mellitus. E-CliniC, 4(1), 2–5. https://doi.org/10.35790/ecl.4.1.2016.12112
Hempe, J. M., & Hsia, D. S. (2022). Variation in the hemoglobin glycation index. Journal of Diabetes and Its Complications, 36(7), 108223. https://doi.org/10.1016/j.jdiacomp.2022.108223
Hidayangsih, P. S., Tjandrarini, D. H., Widya Sukoco, N. E., Sitorus, N., Dharmayanti, I., & Ahmadi, F. (2023). Chronic kidney disease in Indonesia: evidence from a national health survey. Osong Public Health and Research Perspectives, 14(1), 23–30. https://doi.org/10.24171/j.phrp.2022.0290
International Diabetes Federation. (2025). Diabetes Atlas. In D. J. Magliano, E. J. Boyko, I. Genitsaridi, L. Piemonte, P. Riley, P. Salpea, & Supporters (Eds.), Journal of Diabetes (11 th, Vol. 10, Issue 5). International Diabetes Federation. https://doi.org/10.1111/1753-0407.12644
KDIGO. (2022). Clinical Practice Guideline for Diabetes Management in Chronic Kidney Disease. In Kidney Disease: Improving Global Outcomes (KDIGO) (Vol. 102, Issue 5, pp. S1–S127). https://doi.org/10.1016/j.kint.2022.06.008
Kiconco, R., Rugera, S. P., & Kiwanuka, G. N. (2019). Microalbuminuria and Traditional Serum Biomarkers of Nephropathy among Diabetic Patients at Mbarara Regional Referral Hospital in South Western Uganda. Journal of Diabetes Research, 2019. https://doi.org/10.1155/2019/3534260
Lian, H., Wu, H., Ning, J., Lin, D., Huang, C., Li, F., Liang, Y., Qi, Y., Ren, M., Yan, L., You, L., & Xu, M. (2021). The Risk Threshold for Hemoglobin A1c Associated With Albuminuria: A Population-Based Study in China. Frontiers in Endocrinology, 12(May), 1–9. https://doi.org/10.3389/fendo.2021.673976
Marco, L. D., Guerra-torres, X., Viejo, I., Lopez-romero, L., Yugueros, A., & Bermúdez, V. (2022). Non-albuminuric Diabetic Kidney Disease Phenotype: Beyond Albuminuria. TouchREVIEWS in Endocrinology, 18(2), 102–105.https://doi.org/10.17925/EE.2022.18.2.102
Meda E.Pavkov, Y. M. (2023). IDFATLAS Reports (Diabetes and Kidney Disease). In D. J. Magliano, E. J. Boyko, I. Genitsaridi, L. Piemonte, P. Riley, & P. Salpea (Eds.), Idfatlas Reports (pp. 31–41). International Diabetes Federation. www.diabetesatlas.org
Monseu, M., Gand, E., Saulnier, P. J., Ragot, S., Piguel, X., Zaoui, P., Rigalleau, V., Marechaud, R., Roussel, R., Hadjadj, S., & Halimi, J. M. (2015). Acute kidney injury predicts major adverse outcomes in diabetes: Synergic impact with low glomerular filtration rate and albuminuria. Diabetes Care, 38(12), 2333–2340. https://doi.org/10.2337/dc15-1222
Mora-Fernández, C., Domínguez-Pimentel, V., de Fuentes, M. M., Górriz, J. L., Martínez-Castelao, A., & Navarro-González, J. F. (2014). Diabetic kidney disease: From physiology to therapeutics. Journal of Physiology, 592(18), 3997–4012. https://doi.org/10.1113/jphysiol.2014.272328
Octaviani, R. S., Triswanti, N., Mandala, Z., & Esfandiari, F. (2025). The Relationship Between HbA1c Levels and Kidney Function in Type 2 Diabetes Mellitus Patients at Bintang Amin Hospital. Journal of Medical Science and Health, 12(7), 1516–1523.
Syaifuddin, T. salis, Nurjanah, M. H., Kumalasari, N. C., & Widodo, W. T. (2023). Relationship Between Hba1c And Egfr In Diabetes Mellitus (Dm) Patients Following Prolanis At Ultra Medica Tulungagung Clinic Laboratory. Jurnal Biosains Pascasarjana, 24(1sp), 13–20. https://doi.org/10.20473/jbp.v24i1sp.2022.13-20
Tang, W. H., Hung, W. C., Wang, C. P., Wu, C. C., Hsuan, C. F., Yu, T. H., Hsu, C. C., Cheng, Y. A., Chung, F. M., Lee, Y. J., & Lu, Y. C. (2022). The Lower Limit of Reference of Urinary Albumin/Creatinine Ratio and the Risk of Chronic Kidney Disease Progression in Patients With Type 2 Diabetes Mellitus. Frontiers in Endocrinology, 13(June), 1–9. https://doi.org/10.3389/fendo.2022.858267
Tuttle, K. R., Agarwal, R., Alpers, C. E., Bakris, G. L., Brosius, F. C., Kolkhof, P., & Uribarri, J. (2022). Molecular mechanisms and therapeutic targets for diabetic kidney disease. Kidney International, 102(2), 248–260. https://doi.org/10.1016/j.kint.2022.05.012
Ullah, W., Nazir, A., Israr, H., Hussain, S., & Farooq, M. (2023). Assessment of Serum Urea and Creatinine Levels in Diabetic Patients. BioScientific Review, 5(3), 26–32. https://doi.org/10.32350/bsr.53.03
Xu, Y., Dong, S., Fu, E. L., Sjölander, A., Grams, M. E., Selvin, E., & Carrero, J. J. (2023). Long-term Visit-to-Visit Variability in Hemoglobin A1c and Kidney-Related Outcomes in Persons With Diabetes. Diabetes Research and Clinical Practice, 201(8), 1–28. https://doi.org/10.1016/j.diabres.2023.110685
Yu, S. M.-W., & Bonventre, J. V. (2018). Acute Kidney Injury and Progression of Diabetic Kidney Disease. Physiology & Behavior, 176(1), 100–106. https://doi.org/10.1177/0022146515594631.Marriage
