Inhibitory Effect of Nutmeg (Myristica fragrans) Leaf Extract on Biofilm Formation by Methicillin-Resistant Staphylococcus aureus (MRSA)
Main Article Content
Abstract
Background: Methicillin-resistant Staphylococcus aureus (MRSA) is an opportunistic pathogen with a strong capacity for biofilm formation, which enhances resistance to antibiotics. Although nutmeg (Myristica fragrans) seeds and mace have been extensively studied, research on nutmeg leaves is limited despite their content of flavonoids, tannins, saponins, and triterpenoids with antimicrobial potential. Objective: This study evaluated the antibiofilm activity of nutmeg leaf extract against MRSA biofilm formation in vitro. Materials and Methods: Biofilm assays were conducted using MRSA isolates. The optimal incubation time for biofilm formation was first determined, followed by treatment with nutmeg leaf extract. Results: MRSA formed optimal biofilms at 48 h (OD = 0.101 ± 0.012). Nutmeg leaf extract significantly reduced biofilm formation (OD = 0.083 ± 0.010) compared with the negative control (OD = 0.118 ± 0.009) and the positive control, tetracycline (OD = 0.096 ± 0.011) (p = 0.001). While the reduction was statistically significant, the difference from tetracycline was modest. Conclusion: Nutmeg leaf extract demonstrated significant antibiofilm activity against MRSA in vitro. These findings support its potential as a complementary natural agent for managing biofilm-associated infections, warranting further studies to isolate active compounds and assess synergistic effects with standard antibiotics.
Article Details

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
References
Aboelnaga, N., Elsayed, S. W., Abdelsalam, N. A., Salem, S., Saif, N. A., Elsayed, M., Ayman, S., Nasr, M., & Elhadidy, M. (2024). Deciphering the dynamics of methicillin-resistant Staphylococcus aureus biofilm formation: From molecular signaling to nanotherapeutic advances. Cell Communication and Signaling, 22(1). BioMed Central Ltd. https://doi.org/10.1186/s12964-024-01511-2
Besan, E. J., Rahmawati, I., & Saptarini, O. (2023). Antibiofilm Activity of Extracts and Fractions of Butterfly Pea Flowers (Clitoria ternatea L.) against Staphylococcus aureus. PHARMACY: Indonesian Pharmaceutical Journal, 20(1), 1. https://doi.org/10.30595/pharmacy.v0i0.14437
Bitwell, C., Sen, S., & Luke, C. (2023). A review of modern and conventional extraction techniques and their applications for extracting phytochemicals from plants. Scientific African, 19, e01585. https://doi.org/10.1016/j.sciaf.2023.e01585
Cangui-Panchi, S. P., Ñacato-Toapanta, A. L., Enríquez-Martínez, L. J., Reyes, J., Garzon-Chavez, D., & Machado, A. (2022). Biofilm-forming microorganisms causing hospital-acquired infections from intravenous catheters: A systematic review. Current Research in Microbial Sciences, 3(November). https://doi.org/10.1016/j.crmicr.2022.100175
Donati, E., Ramundi, V., Nicoletti, I., Righetti, L., Cimini, S., De Gara, L., & Mariani, F. (2025). Bioprospecting of six polyphenol-rich Mediterranean wild edible plants reveals antioxidant, antibiofilm, and bactericidal properties against methicillin-resistant Staphylococcus aureus., 1–18.
Fawwaz, M., Nurdiansyah, S., & Baits, M. (2019). Potential of Nutmeg Leaves (Myristica fragrans Houtt) as a Source of Phenolic Compounds. Indonesian Phytopharmacy Journal, 4(1).
Hernández-Cuellar, E., Tsuchiya, K., Valle-Ríos, R., & Medina-Contreras, O. (2023). Differences in biofilm formation by methicillin-resistant and methicillin-susceptible Staphylococcus aureus strains. Diseases, 11(4). MDPI. https://doi.org/10.3390/diseases11040160
Kaneko, H., Nakaminami, H., Ozawa, K., Wajima, T., & Noguchi, N. (2021). In vitro anti-biofilm effect of anti-methicillin-resistant Staphylococcus aureus (anti-MRSA) agents against the USA300 clone. Journal of Global Antimicrobial Resistance, 24, 63–71. https://doi.org/10.1016/j.jgar.2020.11.026
Kim, H. (2014). Statistical notes for clinical researchers: Nonparametric statistical methods: 1. Nonparametric methods for comparing two groups., 7658, 235–239.
Majnooni, M. B., Ghanadian, S. M., Mojarrab, M., Bahrami, G., Mansouri, K., Mirzaei, A., & Farzaei, M. H. (2023). Activities of flavonoids isolated from Allium colchicifolium leaves. 2023. https://doi.org/10.1155/2023/5521661
Mishra, A., Aggarwal, A., & Khan, F. (2024). Medical device-associated infections caused by biofilm-forming microbial pathogens and controlling strategies. Antibiotics, 13(7), 1–16. https://doi.org/10.3390/antibiotics13070623
Peele, A., Jagarlapoodi, S., & Vekateswarulu, T. C. (2017). Investigation of the potential antibiofilm activities of plant extracts. September 2017.
Rahmadeni, Y., Febria, F. A., & Bakhtiar, D. A. (2019). Potential of Pakih Sipasan (Blechnum orientale) as an antibacterial agent against Staphylococcus aureus and methicillin-resistant Staphylococcus aureus. Journal of Biological Sciences, 6(2), 224–229. https://doi.org/10.24843/metamorfosa.v06.i02.p12
Rivani, E., Arfijanto, M. V., & Widodo, A. D. W. (2022). Vancomycin for methicillin-resistant Staphylococcus aureus biofilm eradication is associated with the emergence of heterogeneous vancomycin-intermediate Staphylococcus aureus. International Journal of Health Sciences, 811–818. https://doi.org/10.53730/ijhs.v6ns9.12536
Sang, H., Jin, H., Song, P., Xu, W., & Wang, F. (2024). Gallic acid exerts antibiofilm activity by inhibiting methicillin-resistant Staphylococcus aureus adhesion. Scientific Reports, 1–11. https://doi.org/10.1038/s41598-024-68279-w
Santajit, S., Tunyong, W., Horpet, D., Binmut, A., Kong-Ngoen, T., Wisessaowapak, C., Thavorasak, T., Pumirat, P., & Indrawattana, N. (2024). Unveiling the antimicrobial, anti-biofilm, and anti-quorum-sensing potential of Paederia foetida Linn. leaf extract against Staphylococcus aureus: An integrated in vitro–in silico investigation. Antibiotics, 13(7). https://doi.org/10.3390/antibiotics13070613
Silva, V., Almeida, L., Gaio, V., Cerca, N., Manageiro, V., Caniça, M., Capelo, J. L., Igrejas, G., & Poeta, P. (2021). Biofilm formation of multidrug-resistant MRSA strains isolated from different types of human infections. Pathogens, 10(8). https://doi.org/10.3390/pathogens10080970
Talikan, A., & Ajan, R. (2025). On paired samples t-test: Applications, examples and limitations. March. https://doi.org/10.5281/zenodo.10987546
Tobi, C. H. B., Saptarini, O., & Rahmawati, I. (2022). Antibiofilm activity of extracts and fractions of areca nut seeds (Areca catechu L.) against Staphylococcus aureus ATCC 25923. Journal of Pharmaceutical Science and Clinical Research (JPSCR), 7(1), 56. https://doi.org/10.20961/jpscr.v7i1.43698
Ummah, M. S. (2019). Potential of nutmeg leaf extract (Myristica fragrans Houtt) as a natural preservative on the quality of broiler chicken meat. Fillia Cendekia Journal, 11(1), 1–14. https://doi.org/10.32503/fillia.v5i2.1170
Verep, D., Ateş, S., & Karaoğul, E. (2023). A review of extraction methods for obtaining bioactive compounds in plant-based raw materials. Bulletin of Advanced Research, 25(3), 492–513. https://doi.org/10.24011/barofd.1303285
Winarsih, S., Khasanah, U., & Alfatah, A. H. (2019). Antibiofilm activity of ethyl acetate fraction of Mimosa pudica leaf extract against methicillin-resistant Staphylococcus aureus (MRSA) in vitro. Health Journal, 6(2), 76–85. https://doi.org/10.21776/ub.majalahkesehatan.006.02.1
Wisdyafanny, M. W., & Silviani, Y. (2023). Antibacterial effectiveness test of nutmeg leaf ethanol extract (Myristica fragrans Houtt) against Staphylococcus epidermidis. Journal of Pharmacy, 12(1). Morch.
Wu, X., Wang, H., Xiong, J., Yang, G. X., Hu, J. F., Zhu, Q., & Chen, Z. (2024). Staphylococcus aureus biofilm: Formulation, regulatory, and emerging natural product-derived therapeutics. Biofilm, 7. Elsevier B.V. https://doi.org/10.1016/j.bioflm.2023.100175